882 research outputs found

    On entanglement evolution across defects in critical chains

    Get PDF
    We consider a local quench where two free-fermion half-chains are coupled via a defect. We show that the logarithmic increase of the entanglement entropy is governed by the same effective central charge which appears in the ground-state properties and which is known exactly. For unequal initial filling of the half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde

    A DEFENSE OF ACTIVISM

    Get PDF

    Evolution of entanglement after a local quench

    Full text link
    We study free electrons on an infinite half-filled chain, starting in the ground state with a bond defect. We find a logarithmic increase of the entanglement entropy after the defect is removed, followed by a slow relaxation towards the value of the homogeneous chain. The coefficients depend continuously on the defect strength.Comment: 14 pages, 9 figures, final versio

    Fluctuations in subsystems of the zero temperature XX chain: Emergence of an effective temperature

    Full text link
    The zero-temperature XX chain is studied with emphasis on the properties of a block of LL spins inside the chain. We investigate the quantum fluctuations resulting from the entanglement of the block with the rest of the chain using analytical as well as numerical (density matrix renormalization group) methods. It is found that the rest of the chain acts as a thermal environment and an effective temperature can be introduced to describe the fluctuations. We show that the effective temperature description is robust in the sense that several independent definitions (through fluctuation dissipation theorem, comparing with a finite temperature system) yield the same functional form in the limit of large block size (LL\to\infty). The effective temperature can also be shown to satisfy the basic requirements on how it changes when two bodies of equal or unequal temperatures are brought into contact.Comment: 19 pages, 7 figure

    Entanglement evolution after connecting finite to infinite quantum chains

    Full text link
    We study zero-temperature XX chains and transverse Ising chains and join an initially separate finite piece on one or on both sides to an infinite remainder. In both critical and non-critical systems we find a typical increase of the entanglement entropy after the quench, followed by a slow decay towards the value of the homogeneous chain. In the critical case, the predictions of conformal field theory are verified for the first phase of the evolution, while at late times a step structure can be observed.Comment: 15 pages, 11 figure

    On the continuum limit of the entanglement Hamiltonian

    Get PDF
    We consider the entanglement Hamiltonian for an interval in a chain of free fermions in its ground state and show that the lattice expression goes over into the conformal one if one includes the hopping to distant neighbours in the continuum limit. For an infinite chain, this can be done analytically for arbitrary fillings and is shown to be the consequence of the particular structure of the entanglement Hamiltonian, while for finite rings or temperatures the result is based on numerical calculations

    Entanglement in the XX spin chain with an energy current

    Get PDF
    We consider the ground state of the XX chain that is constrained to carry a current of energy. The von Neumann entropy of a block of LL neighboring spins, describing entanglement of the block with the rest of the chain, is computed. Recent calculations have revealed that the entropy in the XX model diverges logarithmically with the size of the subsystem. We show that the presence of the energy current increases the prefactor of the logarithmic growth. This result indicates that the emergence of the energy current gives rise to an increase of entanglement.Comment: 4 pages, 4 figure

    On the relation between entanglement and subsystem Hamiltonians

    Full text link
    We show that a proportionality between the entanglement Hamiltonian and the Hamiltonian of a subsystem exists near the limit of maximal entanglement under certain conditions. Away from that limit, solvable models show that the coupling range differs in both quantities and allow to investigate the effect.Comment: 7 pages, 2 figures version2: minor changes, typos correcte

    Exact results for the entanglement across defects in critical chains

    Get PDF
    We consider fermionic and bosonic quantum chains where a defect separates two subsystems and compare the corresponding entanglement spectra. With these, we calculate their R\'enyi entanglement entropies and obtain analytical formulae for the continuously varying coefficient of the leading logarithmic term. For the bosonic case we also present numerical results.Comment: 17 pages, 6 figures, some remarks adde

    Quantum Quench from a Thermal Initial State

    Full text link
    We consider a quantum quench in a system of free bosons, starting from a thermal initial state. As in the case where the system is initially in the ground state, any finite subsystem eventually reaches a stationary thermal state with a momentum-dependent effective temperature. We find that this can, in some cases, even be lower than the initial temperature. We also study lattice effects and discuss more general types of quenches.Comment: 6 pages, 2 figures; short published version, added references, minor change
    corecore